Simulations of Nearshore Particle-Pair Dispersion in Southern California

JOURNAL OF PHYSICAL OCEANOGRAPHY(2013)

引用 50|浏览10
暂无评分
摘要
Knowledge of horizontal relative dispersion in nearshore oceans is important for many applications including the transport and fate of pollutants and the dynamics of nearshore ecosystems. Two-particle dispersion statistics are calculated from millions of synthetic particle trajectories from high-resolution numerical simulations of the Southern California Bight. The model horizontal resolution of 250 m allows the investigation of the two-particle dispersion, with an initial pair separation of 500 m. The relative dispersion is characterized with respect to the coastal geometry, bathymetry, eddy kinetic energy, and the relative magnitudes of strain and vorticity. Dispersion is dominated by the submesoscale, not by tides. In general, headlands are more energetic and dispersive than bays. Relative diffusivity estimates are smaller and more anisotropic close to shore. Farther from shore, the relative diffusivity increases and becomes less anisotropic, approaching isotropy similar to 10 km from the coast. The degree of anisotropy of the relative diffusivity is qualitatively consistent with that for eddy kinetic energy. The total relative diffusivity as a function of pair separation distance R is on average proportional to R-5/4. Additional Lagrangian experiments at higher horizontal numerical resolution confirmed the robustness of these results. Structures of large vorticity are preferably elongated and aligned with the coastline nearshore, which may limit cross-shelf dispersion. The results provide useful information for the design of subgrid-scale mixing parameterizations as well as quantifying the transport and dispersal of dissolved pollutants and biological propagules.
更多
查看译文
关键词
Coastal flows,Diffusion,Dispersion,Mixing,Numerical analysis,modeling,Regional models
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要