Sediment nitrogen mineralization and immobilization affected by non-native Sonneratia apetala plantation in an intertidal wetland of South China.

Environmental pollution (Barking, Essex : 1987)(2022)

引用 2|浏览9
暂无评分
摘要
The mineralization and immobilization of nitrogen (N) are critical biogeochemical transformations in estuarine and coastal sediments. However, the biotic and abiotic mechanisms that regulate the two processes in different aged mangrove sediments remain poorly understood. Here, we used 15N isotope dilution method to investigate the changes in sediment N mineralization (GNM) and NH4+ immobilization (GAI) of different aged mangrove habitats (including 0, 10, and 20 years Sonneratia apetala, as well as >40 years mature native Kandelia obovata) in Qi'ao Island, Guangdong Province, China. Measured GNM and GAI rates ranged from 2.69 to 17.53 μg N g-1 d-1 and 2.29-21.38 μg N g-1 d-1, respectively, which varied both spatially and seasonally. The ratio of GNM to total N (PAM%, 0.24-0.86%) also varied spatially and seasonally, but the ratio of GAI to GNM (RAI, 0.79-1.54) only varied spatially. Mangrove restoration significantly increased the N mineralization and immobilization rates, but remained lower than those of mature native Kandelia obovata habitat. The sediment bacterial abundance, labile organic matter and temperature are the dominant factors in controlling N mineralization and immobilization. Our findings suggested that exotic mangrove Sonneratia aperale plantation can enhance sediment N mineralization and immobilization rates and improve N stability through accumulated biomass rapidly. Overall, these results provide new insights into sediment N transformation processes and associated influencing mechanisms in such intertidal wetlands profoundly influenced by human activities.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要