How winds and river discharge affect circulation in a mesotidal estuary, San Francisco Bay, USA

semanticscholar(2022)

引用 0|浏览1
暂无评分
摘要
Previous studies suggest importance of wind forcing on salt intrusion length and salt flux in river-dominated microtidal estuaries (with tidal range < 2 m). In this study, we investigate the role of wind forcing on salt intrusion in a mesotidal estuary, San Francisco Bay (SFB), with tidal ranges between 2 m and 4 m, through an open-source model of high transferability, the Semi-implicit Cross-scale Hydroscience Integrated System Model (SCHISM). Meanwhile, we investigate circulation and salinity variation of San Francisco Bay. The model’s performance in hydrodynamics at tidal, spring/neap and seasonal time scales is validated through model-observation comparisons. Through realistically forced and process-oriented experiments, we demonstrate that spring/neap tides can cause fortnightly variations in salinity and currents by modulating vertical mixing and stratification; and seasonal variability of circulation in North Bay is determined by change of river discharge and modified by winds, while in South Bay it is dominated by wind-driven flows. Furthermore, we revealed the role of wind on X2 (the distance from the Golden Gate Bridge to the 2-PSU isohaline at the bottom). The model results show that X2 is primarily influenced by river flow and proportional to river flow to the ¼ power. Meanwhile, wind plays a secondary role in modifying X2 by increasing X2 from 0 to 5 km during low discharge period, while spring/neap tide modulation on X2 is negligible but important for salt balance in sub-regions downstream of X2.
更多
查看译文
关键词
mesotidal estuary,river discharge,winds,san francisco bay,circulation
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要