The Quantum Transition of the Two-Dimensional Ising Spin Glass: A Tale of Two Gaps

arXiv (Cornell University)(2023)

引用 0|浏览1
暂无评分
摘要
Quantum annealers are commercial devices aiming to solve very hard computational problems named spin glasses. Just like in metallurgic annealing one slowly cools a ferrous metal, quantum annealers seek good solutions by slowly removing the transverse magnetic field at the lowest possible temperature. The field removal diminishes quantum fluctuations but forces the system to traverse the critical point that separates the disordered phase (at large fields) from the spin-glass phase (at small fields). A full understanding of this phase transition is still missing. A debated, crucial question regards the closing of the energy gap separating the ground state from the first excited state. All hopes of achieving an exponential speed-up, as compared to classical computers, rest on the assumption that the gap will close algebraically with the number of qspins, but renormalization group calculations predict that the closing will be instead exponential. Here we solve this debate through extreme-scale numerical simulations, finding that both parties grasped parts of the truth. While the closing of the gap at the critical point is indeed super-algebraic, it remains algebraic if one restricts the symmetry of possible excitations. Since this symmetry restriction is experimentally achievable (at least nominally), there is still hope for the Quantum Annealing paradigm.
更多
查看译文
关键词
quantum transition,glass,two-dimensional
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要