On-orbit calibration and performance of the EMIT imaging spectrometer

David R. Thompson,Robert O. Green,Christine Bradley,Philip G. Brodrick, Natalie Mahowald, Eyal Ben Dor, Matthew Bennett,Michael Bernas,Nimrod Carmon, K. Dana Chadwick,Roger N. Clark, Red Willow Coleman, Evan Cox,Ernesto Diaz,Michael L. Eastwood,Regina Eckert, Bethany L. Ehlmann,Paul Ginoux, Maria Gonsalves Ageitos, Kathleen Grant, Luis Guanter, Daniela Heller Pearlshtien, Mark Helmlinger, Harrison Herzog, Todd Hoefen, Yue Huang, Abigail Keebler, Olga Kalashnikova, Didier Keymeulen, Raymond Kokaly, Martina Klose, Longlei Li, Sarah R. Lundeen, John Meyer, Elizabeth Middleton, Ron L. Miller, Pantazis Mouroulis, Bogdan Oaida, Vincenzo Obiso, Francisco Ochoa, Winston Olson-Duvall, Gregory S. Okin, Thomas H. Painter, Carlos Perez Garcia-Pando, Randy Pollock, Vincent Realmuto, Lucas Shaw, Peter Sullivan, Gregg Swayze, Erik Thingvold, Andrew K. Thorpe, Suresh Vannan, Catalina Villarreal, Charlene Ung, Daniel W. Wilson, Sander Zandbergen

REMOTE SENSING OF ENVIRONMENT(2024)

引用 0|浏览5
暂无评分
摘要
The Earth surface Mineral dust source InvesTigation (EMIT) is a remote visible to shortwave infrared (VSWIR) imaging spectrometer that has been operating onboard the International Space Station since July 2022. This article describes EMIT's on-orbit spectroradiometric calibration and validation. Accurate spectroscopy is vital to achieve consistent mapping results with orbital imaging spectrometers. EMIT takes a unique approach to this challenge, with just six optical elements, no shutter, and no onboard calibration systems. Its simple design focuses on uniformity and stability to enable vicarious spectroradiometric calibration. Our experiments demonstrate that this approach is successful, approaching the fidelity of manual field spectroscopy in some cases, and enabling new and more accurate products across diverse Earth science disciplines. EMIT achieves several notable firsts for an instrument of its class. It demonstrates successful on-orbit adjustments of Focal Plane Array (FPA) alignment with sub -micron precision. It offers spectral uniformity better than 98%. Optical artifacts in the measurement channels are at least three orders of magnitude below the primary solar -reflected surface signals. Its noise performance enables percent -level discrimination in the depths of mineral absorption features. In these aspects, EMIT satisfies the stringent performance needs for the next generation of VSWIR imaging spectrometers to observe the Earth's ecosystems, geology, and water resources.
更多
查看译文
关键词
Imaging spectroscopy,Hyperspectral imagery,Mineral dust cycle,Radiative forcing,EMIT,NASA,International space station,Remote sensing,Mineralogy,Calibration,Validation,Atmospheric correction,Visible-shortwave infrared spectroscopy
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要