Enhancing Reverse Intersystem Crossing in Triptycene-TADF Emitters: Theoretical Insights into Reorganization Energy and Heavy Atom Effects

JOURNAL OF PHYSICAL CHEMISTRY A(2024)

引用 0|浏览1
暂无评分
摘要
Thermally activated delayed fluorescence (TADF) emitters based on the triptycene skeleton demonstrate exceptional performance, superior stability, and low efficiency roll-off. Understanding the interplay between the luminescent properties of triptycene-TADF molecules and their assembly environments, along with their excited-state characteristics, necessitates a comprehensive theoretical exploration. Herein, we predict the photophysical properties of triptycene-TADF molecules in a thin film environment using the quantum mechanics/molecular mechanics method and quantify their substantial dependency on the heavy atom effects and reorganization energies using the Marcus-Levich theory. Our calculated photophysical properties for two recently reported molecules closely align with experimental values. We design three novel triptycene-TADF molecules by incorporating chalcogen elements (O, S, and Se) to modify the acceptor units. These newly designed molecules exhibit reduced reorganization energies and enhanced reverse intersystem crossing (RISC) rates. The heavy atom effect amplifies spin-orbit coupling, thereby facilitating the RISC process, particularly at a remarkably high rate of similar to 10(9) s(-1). [GRAPHICS]
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要