Unrevealing the influence of reagent properties on disruption and digestibility of lignocellulosic biomass during alkaline pretreatment

Usama Shakeel, Yu Zhang,Cuiyi Liang, Wen Wang,Wei Qi

International Journal of Biological Macromolecules(2024)

引用 0|浏览0
暂无评分
摘要
Beyond the conventional consideration of pretreatment severity (PS) responsible for biomass disruption, the influence of reagent properties on biomass (LCB) disruption is often overlooked. To investigate the LCB disruption as a function of reagent properties, reagents with distinct cations (NaOH and KOH) and significantly higher delignification potential were chosen. NaOH solution (3 % w/v) with a measured pH of 13.05 ± 0.01 is considered the reference, against which a KOH solution (pH = 13.05 ± 0.01) was prepared for LCB pretreatment under the same PS. Despite comparable lignin content, varying glucose yield of NaOH (68.76 %) and KOH (46.88 %) pretreated residues indicated the presence of heterogeneously disrupted substrate. Holocellulose extracted from raw poplar (ASC, control) and alkaline pretreated residues (C-NaOH and C-KOH) were analyzed using HPLC, XRD, SEM, TGA/DTG, XPS, and 13CP MAS NMR to investigate the pretreatment-induced structural modification. Results revealed that, despite the same pretreatment severity, better disruption in C-NaOH (higher accessible fibril surface and less-ordered region) leading to higher digestibility than C-KOH, likely due to the smaller ionic radius of Na+, facilitates better penetration into dense LCB matrix. This study elucidates the importance of considering the reagent properties during LCB pretreatment, eventually enhancing consciousness while selecting reagents for efficient LCB utilization.
更多
查看译文
关键词
Cellulose,Supramolecular structure,Lignocellulosic biomass,Alkaline pretreatment,Pretreatment severity
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要