Vertical Energy Fluxes Driven by the Interaction Between Wave Groups and Langmuir Turbulence

Malcolm E. Scully, Seth F. Zippel

Journal of Physical Oceanography(2024)

引用 0|浏览0
暂无评分
摘要
Abstract Data from an air-sea interaction tower are used to close the turbulent kinetic energy (TKE) budget in the wave-affected surface layer of the upper ocean. Under energetic wind forcing with active wave breaking, the dominant balance is between the dissipation rate of TKE and the downward convergence in vertical energy flux. The downward energy flux is driven by pressure work, and the TKE transport is upward, opposite to the downgradient assumption in most turbulence closure models. The sign and the relative magnitude of these energy fluxes are hypothesized to be driven by an interaction between the vertical velocity of Langmuir circulation (LC) and the kinetic energy and pressure of wave groups, which is the result of small-scale wave-current interaction. Consistent with previous modeling studies, the data suggest that the horizontal velocity anomaly associated with LC refracts wave energy away from downwelling regions and into upwelling regions, resulting in negative covariance between the vertical velocity of LC and the pressure anomaly associated with the wave groups. The asymmetry between downward pressure work and upward TKE flux is explained by the Bernoulli response of the sea surface, which results in groups of waves having a larger pressure anomaly than the corresponding kinetic energy anomaly, consistent with group-bound long wave theory.
更多
查看译文
AI 理解论文
溯源树
样例
生成溯源树,研究论文发展脉络
Chat Paper
正在生成论文摘要